Transcriptional activity and role of plasmids of Lactobacillus brevis BSO 464 and Pediococcus claussenii ATCC BAA-344T during growth in the presence of hops
نویسندگان
چکیده
Whole-transcriptome analysis was performed on beer-spoilage organisms Lactobacillus brevis BSO 464 (Lb464) and Pediococcus claussenii ATCC BAA-344 (Pc344) when grown in growth-limiting concentrations of hop extract. This was done to delineate the hops-specific component of the total transcriptional response for these bacteria when growing in beer. The transcriptome of highly hop-tolerant isolate Lb464 had fewer genes with differential expression in response to a stronger challenge (i.e., higher bitterness units) of hop extract than did Pc344, highlighting the variable nature of hop-tolerance in beer-spoilage-related lactic acid bacteria. As Lb464 can grow in pressurized/gassed beer and Pc344 cannot, this indicates that the genetic and physiological response to hops alone does not dictate the overall beer-spoilage virulence of an isolate. The general response to hops in both isolates involves pathways of acid tolerance and intracellular pH homeostasis, with glutamate and citrate metabolism, and biogenic amine metabolism as additional major responses to the presence of hop extract by Lb464 and Pc344, respectively. A Pc344 chromosomal ABC transporter (PECL_1630) was more strongly expressed than the plasmid-located, hop-tolerance ABC transporter horA. PECL_1630 is suggested to be involved in import of ATP into the cell, potentially assisting the total bacterial community when facing hop stress. This transporter is found in other beer-related P. claussenii suggesting a putative species-specific beer-spoilage-related
منابع مشابه
Complete genome sequence of the beer spoilage organism Pediococcus claussenii ATCC BAA-344T.
Pediococcus claussenii is a common brewery contaminant. We have sequenced the chromosome and plasmids of the type strain P. claussenii ATCC BAA-344. A ropy variant was chosen for sequencing to obtain genetic information related to growth in beer, as well as exopolysaccharide and possibly biofilm formation by this organism.
متن کاملTranscriptome Sequence and Plasmid Copy Number Analysis of the Brewery Isolate Pediococcus claussenii ATCC BAA-344T during Growth in Beer
Growth of specific lactic acid bacteria in beer leads to spoiled product and economic loss for the brewing industry. Microbial growth is typically inhibited by the combined stresses found in beer (e.g., ethanol, hops, low pH, minimal nutrients); however, certain bacteria have adapted to grow in this harsh environment. Considering little is known about the mechanisms used by bacteria to grow in ...
متن کاملRole of plasmids in Lactobacillus brevis BSO 464 hop tolerance and beer spoilage.
Specific isolates of lactic acid bacteria (LAB) can grow in the harsh beer environment, thus posing a threat to brew quality and the economic success of breweries worldwide. Plasmid-localized genes, such as horA, horC, and hitA, have been suggested to confer hop tolerance, a trait required for LAB survival in beer. The presence and expression of these genes among LAB, however, do not universall...
متن کاملGenome Sequence of Rapid Beer-Spoiling Isolate Lactobacillus brevis BSO 464
The genome of brewery-isolate Lactobacillus brevis BSO 464 was sequenced and assembly produced a chromosome and eight plasmids. This bacterium tolerates dissolved CO2/pressure and can rapidly spoil packaged beer. This genome is useful for analyzing the genetics associated with beer spoilage by lactic acid bacteria.
متن کاملPhylogenetic analysis of the genus Pediococcus, including Pediococcus claussenii sp. nov., a novel lactic acid bacterium isolated from beer.
Pediococci are found in foods and on plants and as beer-spoilage agents. The goal of the present study was to use the DNA sequences of the first three variable regions of the 165 rRNA gene, the 16S-23S rRNA internally transcribed spacer region sequence and approximately a third of the 60 kDa heat-shock protein gene to elucidate phylogenetic groupings within the genus Pediococcus. Phylogenetic t...
متن کامل